
Random thoughts about learning a programming language:

Learning a programming language is like learning a spoken language. The more you practice, the better

you get, and the fewer mistakes you make.

Programming languages are easier than spoken languages because there are many fewer words to

learn.

Programming languages are harder than spoken languages because if you make a minor mistake –or

even a major one --in a spoken language you may still be understood. In a computer language even a

small mistake can get you into trouble; sometimes BIG trouble.

Learning and working with a computer language may cause you to increase your usage of profanity in

your spoken language.

Random notes about the C language

/* comment */ this is the standard method of entering a comment. It may be on a single line or it may

extend over many lines.

// this is a single line comment it ends at the end of the line. (This non-standard and does not work on

all compilers)

Just about all programming languages have some equivalent of the function. In other languages they

may be called subroutines or procedures. A function is a block of code which accomplishes some task.

You may or may not pass one or more variables (called parameters) to the function. The function may

or may or may not return a value. A function may be “called” more than once during the execution of a

program. One of the challenges of learning C is learning which functions are available, which libraries

they are in, and how to use them.

The print() and printf() functions:

print() appears to be able to print text, but you can’t embed formatting

printf means print formatted. Embedded codes control formatting of variables.

printf("This is a printf statement %d\n", c); // the %d indicates a decimal value is inserted here. The

value inserted will be the value of the variable c. – also the \n means go to a new line.

printf("This is a printf statement %9.2f \n", c); //%9.2f means a floating point number is inserted here.

The number will be formatted in 9 spaces with two spaces following the decimal point. The value to be

inserted will be the value of the variable c.

Extremely simple simple program:

/*

Hello Message.c

Display a hello message in the serial terminal.

http://learn.parallax.com/propeller-c-start-simple/simple-hello-message

*/

#include "simpletools.h" // Include simpletools header

int main() // main function

{

print("Hello World \n"); // print out a message

print("This is your computer speaking!");

}

Notes: 1. both kinds of comments

 2. #include directive is needed for the print() function

 3. main() function

 4. use of { and }

 5. use of \n

 6. every command ends with a ;

 HOME (1)

 HOME character (1) sends SimpleIDE Terminal's cursor to top-left "home" position.

 CRSRXY (2)

CRSRXY character (2) sends cursor to a certain number of spaces over (X) and returns (Y) down

from SimpleIDE Terminal's top-left HOME position. This character has to be followed

immediately by the X and Y values when transmitted to the SimpleIDE Terminal.

 CRSRLF (3)

CRSRLF character (3) sends the SimpleIDE Terminal's cursor one column (space) to the left of its

current position.

 CRSRRT (4)

CRSRRT character (4) sends the SimpleIDE Terminal's cursor one column (space) to the right of

its current position.

 CRSRUP (5)

CRSRUP character (5) sends the SimpleIDE Terminal's cursor one row (carriage return) upward

from its current position.

 CRSRDN (6)

file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a0e26ea2db1b570d1a6fe1ac180ef4541
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23afa53bcf09725cf1948b70eaaa229a3d1
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a9e599685cbc5af2bb2a3baffdf881dff
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23acaf84697e36358569284ae174db49051
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a2fda2c79c6638bf0c75ce50209da388a
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a01b2cacea568fc44982a68a31da8757f

CRSRDN character (6) sends the SimpleIDE Terminal's cursor one row (carriage return)

downward from its current position.

 BEEP (7)

BEEP character (7) makes the system speaker in some computers beep when received by

SimpleIDE Terminal.

 BKSP (8)

BKSP character (8) sends the SimpleIDE Terminal's cursor one column (space) to the left of its

current position and erases whatever character was there.

 TAB (9)

 TAB character (9) advances the cursor to the right by a tab's worth of spaces.

 NL (10)

NL character (10) sends the SimpleIDE Terminal's cursor to the leftmost character in the next

line down.

 LF (10)

 LF is same as NL.

 CLREOL (11)

 CLREOL character (11) erases all SimpleIDE Terminal characters to the right of the cursor.

 CLRDN (12)

 CLRDN character (12) erases all SimpleIDE Terminal characters below the cursor.

 CR (13)

 CR character (13) sends SimpleIDE Terminal's cursor one row downward.

 CRSRX (14)

 CRSRX character (14) positions SimpleIDE Terminal's cursor X characters from the its left edge.

 CRSRY (15)

 CRSRY character (15) sends SimpleIDE Terminal's cursor Y rows to the from its top edge.

 CLS (16)

CLS character (16) clears SimpleIDE's screen, erasing all characters and placing the cursor in the

top-left corner.

#include "simpletools.h"

int main(void)

{

int n;

print("Hello ");

pause(1000);

print(HOME); // this is how you use the special codes

pause(1000);

file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a1ceb0e81b845fdcd1b8371e92229a13b
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a4f41e5dc4d1d256277cb259077da1fc6
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23ad58a1fbfc85c7e4790fc55e654f50221
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a4fc34b120ed3bd1120c1eb36abbcd6af
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a350c9d6cb81908d59427ee96844d1a9c
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23ac2f56dd6f32ebc7b504090212600d922
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a1cdb24d24f81764bea8c96fe07d48e0a
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a876ce77f3c672c7162658151e648389e
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23a3cf3d7ff85aa894ae161d3f7ced308f1
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23af522fc6b22b3ec6d30fa9e5462d925e5
file:///C:/Users/rwh04/Documents/SimpleIDE/Learn/Simple%20Libraries/Utility/libsimpletools/html/simpletools_8h.html%23ada59561816893aa39c4aa41f1043c554

print("Here is the second line");

return 0;

}

 Variable types in C

A variable is simply a name given to a memory location. The contents of that memory location

may be changed while the program is running. The C language provides many types of

variables. The four most common types of variables are listed in the table below.

Type of variable How variable

x is declared

printf or scanf

codes

Description

Character char x %c A single character

String (of characters) char x[] %s A group of characters

Integer int x %d An integer number

Floating point float x %f A number containing a decimal point

Double precision double x %lg more digits of precision

Scientific notation double x %le Scientific (e) notation

Note: the “l” in lg and le is a lower case letter l and not the digit 1.

A sample program:

/*

This complete program asks for two numbers, adds them, and prints out the sum

*/

#include "simpletools.h"

int main() // Main function

{
float a,b,c;

print("Please enter a number: ");

a = getFloat();

print("Please enter another: ");

b = getFloat();

c=a*b;

printf("%f times %f equals %f \n",a,b,c);

return 0;

}

*** Another program using scanf() rather than getFloat()

/**

* Accept and do arithmetic with floating point

*/

#include "simpletools.h"

int main(void)

{

double a,b;

pause(1000);

printf("Enter a number ");

scanf("%le",&a);

printf("You entered %le \n",a);

b=100*a;

printf("Answer is %le\n", b);

return 0;

}

This program fragment shows how character strings might be used:

 char str1[20], str2[30];

 printf("Enter name: ");

 scanf("%s", &str1);

 printf("Enter your website name: ");

 scanf("%s", &str2);

 printf("Entered Name: %s\n", str1);

 printf("Entered Website:%s\n", str2);

Launching other cogs:

An amazing feature of the Propeller processor is the fact that it actually has 8 processors (cogs).

Each cog can be working on a different function. Launching a function into another cog is likely

to involve the use of global variables to communicate between/among processes.

Here is a fragment:

static volatile int t, n; // Declare Global vars for cogs to share before the main()

unsigned int stack[40 + 25];

// Stack vars for other cog minimum size= 40 longs plus some extra for variables

int main() // main function

{

int t = 50;

int n = 2;

// now launch adder function into another cog

cogstart(&adder, NULL, stack, sizeof(stack));

(the above is only a fragment, not a complete program)

Stack size: Be liberal with extra stack space for prototyping, and if in doubt, 40 to whatever

value you calculate. I think the units here are bytes.

Did You Know?

Global Variables in Library Source Files

A global variable is accessible to all functions in every source file where it is declared. To avoid

problems:

Initialization — if a global variable is declared in more than one source file in a library, it

should be initialized in only one place or you will get a compiler error.

Static — use the static keyword to make a global variable visible only to functions within the

same source file whenever possible. This removes any potential for conflict with variables of the

same name in any other library source files or user application code. You can use static and

volatile together.

Volatile — Use the volatile keyword for global variables that need to be used by functions

running in different cogs. This keeps the C compiler's size optimizer from removing code that

affects other functions' ability to read or write to that variable from another cog. You can use

static and volatile together.

Naming — if a programmer happens to give a global variable in their application code the same

name as a non-static global variable in a library, the names will conflict and give unexpected

results. To help avoid this, name your variables in a libName_varName format. If you run into a

mystery bug when writing an application, it is worth checking the documentation for the libraries

you are using to see if you have a variable name conflict.

Static variable –one whose lifetime extends across the entire run of the program.

Volatile variable - the volatile keyword prevents the compiler from applying certain optimizations which

it might have otherwise applied because ordinarily it is assumed variables cannot change value "on their

own." In the Propeller setting, with multiple cogs working, a shared variable can be set by one cog and

changed by another, so it needs to be volatile.

Another, easier method would be the following:

#include "simpletools.h" // Library include

void blink(); // Forward declaration

int main() // Main function

{

 cog_run(&blink, 10); // Run blink in other cog

} //end of main

void blink() // Blink function for other cog

{

 while(1) // Endless loop for other cog

 {

 high(26); // P26 LED on

 pause(100); // ...for 0.1 seconds

 low(26); // P26 LED off

 pause(100); // ...for 0.1 seconds

 } //end of infinite loop

} //end of blink()

cog_run is designed to make launching application level functions (typically from the main file).

All you have to do is pass a pointer to a function with no return value or parameters along with

the number for extra memory to reserve. The value returned can be used to shut down the

process and free up memory and a cog later by passing it to cog_end.

Stack Size - how much? 10 is the bare minimum value you would want to use for the stackSize. If
you were to add more instructions to the blink function's code block, you would need to increase it.
Add 1 for every local variable used, 2 for each function called, and 1 for each parameter and each
return value used by the functions called. (I think the units here are longs.)

Returns: *coginfo Address of memory set aside for the cog. Make sure to save this value in a
variable if you intend to stop the process later with cog_end or check which cog the process was
launched into with cog_num.

Libraries

Simpletools is for lots of stuff, just about everything

abdrive is for the activity bot servos and encoders

abcalibrate (obviously) is the calibration routine

servo.h for Parallax standard and Parallax continuous servos

Tutorials: http://www.cprogramming.com/tutorial/c/lesson1.html

Printf() and scanf() tutorial: https://www.cs.utah.edu/~zachary/isp/tutorials/io/io.html

Printf(codes http://personal.ee.surrey.ac.uk/Personal/R.Bowden/C/printf.html

http://www.cprogramming.com/tutorial/c/lesson1.html
https://www.cs.utah.edu/~zachary/isp/tutorials/io/io.html
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/C/printf.html

Or http://www.cdf.toronto.edu/~ajr/209/notes/printf.html

Videos: PLAN: assign movie for HW BEFORE the class covers the material.

Propeller Activity Board intro https://www.youtube.com/watch?v=xoYvCP2Ghs4 (2:47)

Why should I learn C? https://www.youtube.com/watch?v=37GJTKHn2ec (2:26)

Intro Programming in Propeller C https://www.youtube.com/watch?v=IL2WjB03eU8 (4:36)

How a compiler works (silent view of all stages) (1:29) Watch only the first video, not whole list.

https://www.youtube.com/watch?v=2dan4hJlOv0&list=PLDD1161DD92CA9F3E&index=1

Compiler vs Interpreter https://www.youtube.com/watch?v=kmQUB-5cEgM (3:36)

http://www.cdf.toronto.edu/~ajr/209/notes/printf.html
https://www.youtube.com/watch?v=xoYvCP2Ghs4
https://www.youtube.com/watch?v=37GJTKHn2ec
https://www.youtube.com/watch?v=IL2WjB03eU8
https://www.youtube.com/watch?v=2dan4hJlOv0&list=PLDD1161DD92CA9F3E&index=1
https://www.youtube.com/watch?v=kmQUB-5cEgM

