Iona Prep Physics Lab

To determine the relationship between the observed brightness of a light source and the distance from the source.

Note: we will be measuring brightness in lux. "The **lux** (symbol: **lx**) is the SI unit of illuminance and luminous emittance, measuring luminous flux per unit area. It is equal to one lumen per square meter. In photometry, this is used as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watts per square meter, but with the power at each wavelength weighted according to the luminosity function, a standardized model of human visual brightness perception. In English, "lux" is used in both singular and plural." (Wikipedia)

Procedure:

- 1. Set up the power source, LED, ruler, and light detector/USB Link as indicated.
- 2. Attach the LED holder and the ruler to the desk with masking tape so that they will not move during the experiment.
- 3. Set the detector so that it is 1.0 cm from the LED and looking directly at it.
- 4. With the LED off, record how much light is detected. Call that the ambient light reading.
- 5. Turn the LED on and again record how much light is detected. Call that the raw light reading.
- 6. Subtract the ambient light reading from the raw light reading to get the amount of light that is actually reaching the detector from the LED.
- 7. Repeat steps 4,5,and 6 with the detector set 2,3,4,5,6,7,8 cm from the detector and tabulate your results.
- 8. Set up an Excel spreadsheet (note: the order of the columns is to make graphing easier.)
- 9. Use Excel to create a scatter plot of Distance vs LED light
- 10. Use Excel to create the following trend lines and record the equation and R² for each line: linear, exponential, power. Include that information in your write-up with the data table and graph.

11. Data Table:

Ambient (lx)	Raw (lx)	Distance(cm)	LED light (Raw-Ambient) (lx)
		1	
		2	
		3	
		4	
		5	
		6	
		7	
		8	

Conclusion: The best fit was (choose one: linear, exponential, power) and the equation was...